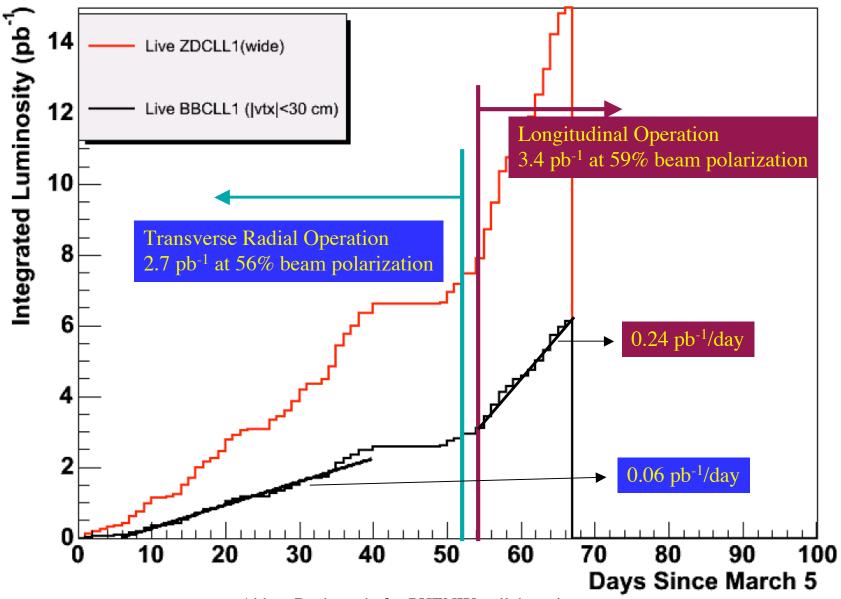




### **Run-6 Status**

Abhay Deshpande Stony Brook & RBRC


Time and Scheduling Meetings May 9, 2006







# Progress so far...





### Accumulations....

- So far: (200 GeV CM longitudinal collisions)
  - -3.4 pb-1 at 59%:  $P^4L = 0.41$
  - To put it in perspective: Compare to Run-5  $P^4L = 0.16$
  - Data taking rate 0.24 pb<sup>-1</sup>/day; early run was 0.06 pb<sup>-1</sup>/day
  - We already have 2.7 pb<sup>-1</sup> at 56% polarization radial data set

### • Aspirations:

- − Can expect to achieve ~9 pb<sup>-1</sup> at ~60% polarization this run!
- A wonderful input for physics outcome at 200 GeV
- 22 GeV CM test + operations(?)
- 62.4 GeV CM ~2 weeks
- 500 GeV machine development and whatever data we can record



## How close to 62.4 GeV CM?

#### **Answer**

### +/- 0.1 GeV, and no more for the comparison data set

#### Why so close?

- For  $R_{AA}$  measurements, we want to compare cross sections of AA-pp collisions at the same  $p_T$  and same CM
- The cross sections fall typically like  $p_T^{\sim 10}$ , as such a small difference in CM can introduce large systematic errors in the ratio.
- +/- 0.1 GeV in CM will introduce ~2% uncertainty which we believe is acceptable for this measurement



# **Sequence of Operations**

For PHENIX both 62.4 GeV CM [HI and Spin] and 500 GeV Machine Commissioning [future Spin] are Important

- Generally a good idea to have data in the bag first! With this guiding principle: 62.4 GeV data set before 500 GeV machine commissioning
- Early 500 GeV: as a result of the reality that CA conference to interfere with 500 GeV machine development at the end?
  - Cons:
    - Main Concern: Heat/humidity might result in more interruption in the later 62.4 GeV data accumulations
    - Exp/DAQ stop for 5-6 days? Expect problems with re-startup
  - **Pros:** If 500 GeV machine study ends early:
    - Can we expect a data taking period for 22 GeV based on the earlier test?
    - Can expect to run longer (to the end) flat out at 62.4 GeV CM